Home > Articles > Journal Club
Journal club
-
2017-03-14 Hong, S. et al. Dissociation of muscle insulin sensitivity from exercise endurance in mice by HDAC3 depletion. Nat Med 23, 223-234, doi:10.1038/nm.4245 (2017), PMID: 27991918
-
2018-09-19 Takagi, T. et al. Differences in gut microbiota associated with age, sex, and stool consistency in healthy Japanese subjects. J Gastroenterol. Jun 20, doi: 10.1007/s00535-018-1488-5 (2018) PMID: 29926167
-
2018-10-02 Yang, Q. et al. MicroRNA and piRNA profiles in normal human testis detected by next generation sequencing. PLoS One, Jun 24;8(6):e66809 doi: 10.1371/journal.pone.0066809 (2013), PMID: 27991918
-
2018-10-10 Valencia, PM. et al. The human microbiome: opportunity or hype? Nat Rev Drug Discov, Dec;16(12):823-824. doi: 10.1038/nrd.2017.154 (2017) PMID: 28912600
-
2018-10-10 Halkjær, SI. et al. Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebo-controlled study. Gut. Jul 6. pii: gutjnl-2018-316434.
doi: 10.1136/gutjnl-2018-316434 (2018) PMID: 29980607 -
2018-10-17 Wang, X. et al. Widespread genetic epistasis among cancer genes. Nat Commun. Nov 19;5:4828. doi: 10.1038/ncomms5828 (2014) PMID: 25407795
-
2018-10-29 Steven A. Roberts and Dmitry A. Gordenin. Hypermutation in human cancer genomes: footprints and mechanisms. Nat Rev Cancer. Dec; 14(12): 786–800. doi: [10.1038/nrc3816] (2014) PMID: 25568919
-
2018-10-29 Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. Oct;562(7726):203-209. doi: 10.1038/s41586-018-0579-z. (2018) PMID: 30305743
-
2018-11-12 JY Ryu. et al. Deep learning improves prediction of drug–drug and drug–food interactions. PNAS May 1, 2018 115 (18) E4304-E4311; doi: https://doi.org/10.1073/pnas.1803294115
-
2018-11-19 JP Tosar. et al. Non-coding RNA fragments account for the majority of annotated piRNAs expressed in somatic non-gonadal tissues. Communications Biology volume 1, Article number: 2 (2018); doi:10.1038/s42003-017-0001-7
-
2018-11-26 SK Mazmanian. et al. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature Vol 453, 620–625, 29 May (2008) doi:10.1038/nature07008
-
2018-12-11 SP Rosshart. et al. Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance. Cell. Nov 16;171(5):1015-1028.e13. (2017) doi: 10.1016/j.cell.2017.09.016 PMID: 29056339
-
2019-01-22 L Sundaram. et al. Predicting the clinical impact of human mutation with deep neural networks. Nature Genetics volume 50, pages1161–1170 (2018) doi:10.1038/s41588-018-0167-z
-
2019-02-11 TB Rounge. et al. Circulating small non-coding RNAs associated with age, sex, smoking, body mass and physical activity. Scientific Reports volume 8, Article number: 17650 (2018) doi:10.1038/s41598-018-35974-4
-
2019-03-26 S Turajlic. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. Volume 18, Issue 8, August, Pages 1009-1021 (2017) doi: 10.1016/S1470-2045(17)30516-8 PMID: 28694034
-
2019-04-10 W Weng. et al. Novel evidence for a PIWI-interacting RNA (piRNA) as an oncogenic mediator of disease progression, and a potential prognostic biomarker in colorectal cancer. Mol Cancer. Jan 30;17(1):16. (2018) doi:10.1186/s12943-018-0767-3 PMID: 29382334
-
2019-04-23 AM Thomas. et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nature Medicine, volume 25, 667–678 April (2019) doi:10.1038/s41591-019-0405-7.
-
2019-05-14 J Zou. et al. A primer on deep learning in genomics. Nat Genet. Jan;51(1):12-18. (2019) doi:10.1038/s41588-018-0295-5. PMID: 30478442
-
2019-05-21 R Xing. et al. Whole-genome sequencing reveals novel tandem-duplication hotspots and a prognostic mutational signature in gastric cancer. Nature Communications, volume 10, Article number: 2037 May (2019) doi:10.1038/s41467-019-09644-6.
-
2019-06-04 J Flannick. et al. Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls. Nature. Jun;570(7759):71-76. (2019) doi: 10.1038/s41586-019-1231-2 PMID: 31118516
-
2019-06-11 TH Wang. et al. More Is Less: Increased Processing of Unwanted Memories Facilitates Forgetting. Journal of Neuroscience 1 May 2019, 39 (18) 3551-3560; doi: 10.1523/JNEUROSCI.2033-18.2019
-
2019-07-02 A Eetemadi. et al. Genetic Neural Networks: An artificial neural network architecture for capturing gene expression relationships. Bioinformatics Nov 19 (2018). doi: 10.1093/bioinformatics/bty945 PMID: 30452523
-
2019-08-06 M Riester. et al. PureCN: copy number calling and SNV classification using targeted short read sequencing. Source Code for Biology and Medicine, volume 11, Article number: 13 (2016) doi: 10.1186/s13029-016-0060-z
-
2019-08-13 DM Ozata. et al. PIWI-interacting RNAs: small RNAs with big functions. Nature Reviews Genetics, volume 20, pages89–108 (2019) doi: 10.1038/s41576-018-0073-3
-
2019-09-10 S An. et al. TSEE: an elastic embedding method to visualize the dynamic gene expression patterns of time series single-cell RNA sequencing data. BMC Genomics, 20(Suppl 2):224 (2019) doi: 10.1186/s12864-019-5477-8
-
2019-09-17 JX Sun. et al. A computational approach to distinguish somatic vs. germline origin of genomic alterations from deep sequencing of cancer specimens without a matched normal. PLoS Comput Biol. Feb 7;14(2):e1005965 (2018) doi: 10.1371/journal.pcbi.1005965 PMID: 29415044
-
2019-10-01 DM Ozata. et al. PIWI-interacting RNAs: small RNAs with big functions. Nature Reviews Genetics, volume 20, pages89–108 (2019) doi: 10.1038/s41576-018-0073-3
-
2019-10-08 JG Reiter. et al. An analysis of genetic heterogeneity in untreated cancers. Nat Rev Cancer. Aug 27(2019). doi: 10.1038/s41568-019-0185-x PMID: 31455892
-
2019-10-15 T Lee. et al. Convolutional neural network model to predict causal risk factors that share complex regulatory features. Nucleic Acids Research. Oct 10 (2019). doi: 10.1093/nar/gkz868
-
2019-10-22 Abid K. et al. Image analysis: openCV-Python. URL : https://opencv-python-tutroals.readthedocs.io
-
2019-10-29 H Jung. et al. DNA methylation loss promotes immune evasion of tumours with high mutation and copy number load. Nat Commun. Sep 19;10(1):4278. (2019) doi: 10.1038/s41467-019-12159-9 PMID: 31537801
-
2019-11-05 Y Wang. et al. Comprehensive Molecular Characterization of the Hippo Signaling Pathway in Cancer. Cell Rep. 2018 Oct 30;25(5):1304-1317.e5. doi: 10.1016/j.celrep.2018.10.001 PMID: 30380420
-
2019-11-12 X Peng. et al. Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers. Cell reports vol. 23,1 (2018): 255-269.e4. doi:10.1016/j.celrep.2018.03.077 PMID: 29617665
-
2019-11-19 K Kim. et al. Chromatin structure–based prediction of recurrent noncoding mutations in cancer. Nature Genetics, 48(11), 1321–1326 (2016). doi:10.1038/ng.3682
-
2019-12-17 Y Yuan. et al. Comprehensive Molecular Characterization of Mitochondrial Genomes in Human Cancers. BioRxiv (2017): 161356. doi:10.1101/161356
-
2020-01-07 H Chen, et al. A pan-cancer analysis of enhancer expression in nearly 9000 patient samples. Cell 173.2 (2018): 386-399. doi:10.1016/j.cell.2018.03.027
-
2020-01-13 B Seo, et al. Roseburia Spp. Abundance Associates with Alcohol Consumption in Humans and Its Administration Ameliorates Alcoholic Fatty Liver in Mice. Cell Host & Microbe (2019), doi:10.1016/j.chom.2019.11.001
-
2020-01-20 H Jung, et al. Immune signatures correlate with L1 retrotransposition in gastrointestinal cancers." Genome research 28.8 (2018): 1136-1146, doi:10.1101/gr.231837.117
-
2020-01-28 Y Xin, et al. RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell metabolism 24.4 (2016): 608-615, doi:10.1016/j.cmet.2016.08.018
-
2020-02-03 GF Gao, et al. Before and after: Comparison of legacy and harmonized TCGA genomic data commons’ data. Cell systems 9.1 (2019): 24-34, doi:10.1016/j.cels.2019.06.006
-
2020-02-10 JS Park, et al. Brain somatic mutations observed in Alzheimer’s disease associated with aging and dysregulation of tau phosphorylation. Nat Commun 10, 3090 (2019), doi:10.1038/s41467-019-11000-7
-
2020-04-22 Y Qi, et al. Kinome Profiling Reveals Abnormal Activity of Kinases in Skeletal Muscle From Adults With Obesity and Insulin Resistance. J Clin Endocrinol Metab 105: 1– 16 (2019), doi:10.1210/clinem/dgz115
-
2020-05-06 Matthew G. Vander Heiden, and Ralph J. DeBerardinis. Understanding the intersections between metabolism and cancer biology. Cell 168.4 (2017): 657-669., doi:10.1016/j.cell.2016.12.039
-
2020-05-20 Fiona M. Behan, et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 568.7753 (2019): 511. doi:10.1038/s41586-019-1103-9
-
2020-05-27 Cheng, Liang, et al. gutMDisorder: a comprehensive database for dysbiosis of the gut microbiota in disorders and interventions. Nucleic acids research 48.D1 (2020): D554-D560. doi:10.1093/nar/gkz843
-
2020-06-03 Fiona M. Behan, et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 568.7753 (2019): 511. doi:10.1038/s41586-019-1103-9
-
2020-06-10 Bryois, Julien, et al. Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease. Nature Genetics 52.5 (2020): 482-493. doi:10.1038/s41588-020-0610-9.
-
2020-06-17 Skene, Nathan G., et al. Genetic identification of brain cell types underlying schizophrenia. Nature genetics 50.6 (2018): 825-833. doi:10.1038/s41588-018-0129-5
-
2020-07-27 Oh, Tae Gyu, et al. A Universal Gut-Microbiome-Derived Signature Predicts Cirrhosis. Cell Metabolism (2020). doi:10.1016/j.cmet.2020.06.005
-
2020-08-19 Kwon, O., Lee, H., Kong, H. et al. Connectivity map-based drug repositioning of bortezomib to reverse the metastatic effect of GALNT14 in lung cancer. Oncogene 39, 4567–4580 (2020). doi:10.1038/s41388-020-1316-2
-
2020-09-03 Tsherniak A, Vazquez F, Montgomery PG, et al. Defining a Cancer Dependency Map. Cell. 2017;170(3):564-576.e16. doi:10.1016/j.cell.2017.06.010
-
2020-09-23 Lawrence Donehower, et al. (2019). Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas. Cell Reports. 28. 3010. doi:10.1016/j.celrep.2019.08.061
-
2020-10-14 Balaguru Ravikumar, et al. (2019). Chemogenomic Analysis of the Druggable Kinome and Its Application to Repositioning and Lead Identification Studies. SSRN Electronic Journal. doi:10.2139/ssrn.3356840
-
2020-10-28 Morteza H. Ghaffari, et al. (2019). Machine learning approach reveals a metabolic signature of over-conditioned cows. Diabetes 2020 Oct; db200586. doi:10.2337/db20-0586
-
2020-11-11 Chen, H., Li, J., Wang, Y. et al. Comprehensive assessment of computational algorithms in predicting cancer driver mutations. Genome Biol 21, 43 (2020). doi:10.1186/s13059-020-01954-z
-
2020-11-18 2020-Fernández-Torras, A., Duran-Frigola, M. & Aloy, P. Encircling the regions of the pharmacogenomic landscape that determine drug response. Genome Med 11, 17 (2019). doi:10.1186/s13073-019-0626-x
-
2020-12-02 Lee, G., You, H.J., Bajaj, J.S. et al. Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD. Nat Commun 11, 4982 (2020). doi:10.1038/s41467-020-18754-5
-
2020-12-09 Schaub, Franz X.Caesar-Johnson, Samantha J. et al. Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. Cell Syst. 2018 Mar 28;6(3):282-300.e2. doi: 10.1016/j.cels.2018.03.003.
-
2020-12-16 Kong, J., Lee, H., Kim, D. et al. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat Commun 11, 5485 (2020). doi:10.1038/s41467-020-19313-8
-
2021-01-06 Mina, M., Iyer, A., Tavernari, D. et al. Discovering functional evolutionary dependencies in human cancers. Nat Genet 52, 1198–1207 (2020). doi:10.1038/s41588-020-0703-5
-
2021-02-03 Newell, F., Wilmott, J.S., Johansson, P.A. et al. Whole-genome sequencing of acral melanoma reveals genomic complexity and diversity. Nat Commun 11, 5259 (2020). doi:10.1038/s41467-020-18988-3
-
2021-02-16 Govaere O, Cockell S, Tiniakos D, et al. Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci Transl Med. 2020;12(572):eaba4448. doi:10.1126/scitranslmed.aba444
-
2021-02-24 Arechederra, M., Daian, F., Yim, A. et al. Hypermethylation of gene body CpG islands predicts high dosage of functional oncogenes in liver cancer. Nat Commun 9, 3164 (2018). doi:10.1038/s41467-018-05550-5
-
2021-03-10 Okazaki, K., Anzawa, H., Liu, Z. et al. Enhancer remodeling promotes tumor-initiating activity in NRF2-activated non-small cell lung cancers. Nat Commun 11, 5911 (2020). doi:org/10.1038/s41467-020-19593-0
-
2021-03-24 Zhang, C., Zhang, L., Xu, T. et al. Mapping the spreading routes of lymphatic metastases in human colorectal cancer. Nat Commun 11, 1993 (2020). doi:10.1038/s41467-020-15886-6
-
2021-04-14 Ballhausen, A., Przybilla, M.J., Jendrusch, M. et al. The shared frameshift mutation landscape of microsatellite-unstable cancers suggests immunoediting during tumor evolution. Nat Commun 11, 4740 (2020). doi:10.1038/s41467-020-18514-5
-
2021-04-28 Chong, J., Liu, P., Zhou, G. et al. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc 15, 799–821 (2020). doi:10.1038/s41596-019-0264-1
-
2021-05-04 Lee YH. Overview of Mendelian Randomization Analysis. J Rheum Dis 2020;27:241-246. doi:10.4078/jrd.2020.27.4.241
-
2021-05-04 Yang, S.J., Kwak, SY., Jo, G. et al. Serum metabolite profile associated with incident type 2 diabetes in Koreans: findings from the Korean Genome and Epidemiology Study. Sci Rep 8, 8207 (2018). doi:10.1038/s41598-018-26320-9
-
2021-05-04 Moon, JS, Goeminne, LJE, Kim, S.-H., et al. Growth differentiation factor 15 protects against the aging-mediated systemic inflammatory response in humans and mice. Aging Cell. 2020; 19:e13195. doi:10.1111/acel.13195
-
2021-05-11 Wang, Longcai et al. Circulating Vitamin D Levels and Alzheimer’s Disease: A Mendelian Randomization Study in the IGAP and UK Biobank’ 1 Jan. 2020 : 609 – 618. doi: 10.3233/JAD-190713
-
2021-05-18 Walker VM, et al. Using the MR-Base platform to investigate risk factors and drug targets for thousands of phenotypes. Wellcome Open Res. 2019 Nov 7;4:113. doi: 10.12688/wellcomeopenres.15334.2. PMID: 31448343; PMCID: PMC6694718.
-
2021-06-23 Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int J Epidemiol. 2011;40(3):740-752. doi:10.1093/ije/dyq151
-
2021-08-04 Fu, Y., Jung, A.W., Torne, R.V. et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat Cancer 1, 800–810 (2020). doi:10.1038/s43018-020-0085-8
-
2021-08-11 Arvanitis M, Qi G, Bhatt DL, Post WS, Chatterjee N, Battle A, McEvoy JW. Linear and Nonlinear Mendelian Randomization Analyses of the Association Between Diastolic Blood Pressure and Cardiovascular Events: The J-Curve Revisited. Circulation. 2021 Mar 2;143(9):895-906. doi: 10.1161/CIRCULATIONAHA.120.049819. Epub 2020 Nov 30. PMID: 33249881; PMCID: PMC7920937.
-
2021-08-25 Zhang Y, Kwok-Shing Ng P, Kucherlapati M, et al. A Pan-Cancer Proteogenomic Atlas of PI3K/AKT/mTOR Pathway Alterations. Cancer Cell. 2017;31(6):820-832.e3. doi:10.1016/j.ccell.2017.04.013
-
2021-09-01 Faust, K., Bala, S., van Ommeren, R. et al. Intelligent feature engineering and ontological mapping of brain tumour histomorphologies by deep learning. Nat Mach Intell 1, 316–321 (2019). doi:10.1038/s42256-019-0068-6
-
2021-09-15 Sanchez-Vega F, Mina M, Armenia J, et al. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell. 2018;173(2):321-337.e10. doi:10.1016/j.cell.2018.03.035
-
2021-09-29 Ye, Y., Hu, Q., Chen, H. et al. Characterization of hypoxia-associated molecular features to aid hypoxia-targeted therapy. Nat Metab 1, 431–444 (2019). doi:10.1038/s42255-019-0045-8
-
2021-10-06 Lynn MA, Eden G, Ryan FJ, et al. The composition of the gut microbiota following early-life antibiotic exposure affects host health and longevity in later life. Cell Rep. 2021;36(8):109564. doi:10.1016/j.celrep.2021.109564
-
2021-10-13 Pleasance, E., Titmuss, E., Williamson, L. et al. Pan-cancer analysis of advanced patient tumors reveals interactions between therapy and genomic landscapes. Nat Cancer 1, 452–468 (2020). doi:10.1038/s43018-020-0050-6
-
2021-10-20 Rosario, S.R., Long, M.D., Affronti, H.C. et al. Pan-cancer analysis of transcriptional metabolic dysregulation using The Cancer Genome Atlas. Nat Commun 9, 5330 (2018). doi:10.1038/s41467-018-07232-82021
-
2021-11-03 Luo Z, Wang W, Li F, et al. Pan-cancer analysis identifies telomerase-associated signatures and cancer subtypes. Mol Cancer. 2019;18(1):106. Published 2019 Jun 10. doi:10.1186/s12943-019-1035-x
-
2022-01-12 Sinkala M, Nkhoma P, Mulder N, Martin DP. Integrated molecular characterisation of the MAPK pathways in human cancers reveals pharmacologically vulnerable mutations and gene dependencies. Commun Biol. 2021;4(1):9. Published 2021 Jan 4. doi:10.1038/s42003-020-01552-6
-
2022-02-09 Squair, J.W., Gautier, M., Kathe, C. et al. Confronting false discoveries in single-cell differential expression. Nat Commun 12, 5692 (2021). doi:10.1038/s41467-021-25960-2
-
2022-02-16 Sengupta S, Sun SQ, Huang KL, et al. Integrative omics analyses broaden treatment targets in human cancer. Genome Med. 2018;10(1):60. Published 2018 Jul 27. doi:10.1186/s13073-018-0564-z
-
2022-02-23 Hu, Z., Zhou, J., Jiang, J. et al. Genomic characterization of genes encoding histone acetylation modulator proteins identifies therapeutic targets for cancer treatment. Nat Commun 10, 733 (2019). doi:10.1038/s41467-019-08554-x
-
2022-03-02 Christ A, Günther P, Lauterbach MAR, et al. Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming. Cell. 2018;172(1-2):162-175.e14. doi:10.1016/j.cell.2017.12.013
-
2022-03-16 Hofmann JW, Zhao X, De Cecco M, et al. Reduced expression of MYC increases longevity and enhances healthspan. Cell. 2015;160(3):477-488. doi:10.1016/j.cell.2014.12.016
-
2022-05-04 Jain IH, Calvo SE, Markhard AL, et al. Genetic Screen for Cell Fitness in High or Low Oxygen Highlights Mitochondrial and Lipid Metabolism. Cell. 2020;181(3):716-727.e11. doi:10.1016/j.cell.2020.03.029
-
2022-05-18 Schubert, M., Klinger, B., Klünemann, M. et al. Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat Commun 9, 20 (2018). doi:10.1038/s41467-017-02391-6
-
2022-07-13 Park J, Shrestha R, Qiu C, et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science. 2018;360(6390):758-763. doi:10.1126/science.aar2131
-
2022-07-27 Iorio F, Knijnenburg TA, Vis DJ, et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell. 2016;166(3):740-754. doi:10.1016/j.cell.2016.06.017
-
2022-08-10 Holmes AG, Parker JB, Sagar V, et al. A MYC inhibitor selectively alters the MYC and MAX cistromes and modulates the epigenomic landscape to regulate target gene expression. Sci Adv. 2022;8(17):eabh3635. doi:10.1126/sciadv.abh3635
-
2022-08-17 Saldanha OL, Quirke P, West NP, et al. Swarm learning for decentralized artificial intelligence in cancer histopathology. Nat Med. 2022;28(6):1232-1239. doi:10.1038/s41591-022-01768-5
-
2022-09-14 Lee, JK., Liu, Z., Sa, J.K. et al. Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nat Genet 50, 1399–1411 (2018). doi:10.1038/s41588-018-0209-6
-
2022-10-05 Chan JM, Zaidi S, Love JR, et al. Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling. Science. 2022;377(6611):1180-1191. doi:10.1126/science.abn0478
-
2022-10-26 Guillen, K.P., Fujita, M., Butterfield, A.J. et al. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nat Cancer 3, 232–250 (2022). doi:10.1038/s43018-022-00337-6
-
2022-11-16 Jin, X., Demere, Z., Nair, K. et al. A metastasis map of human cancer cell lines. Nature 588, 331–336 (2020). doi:10.1038/s41586-020-2969-2
-
2022-11-23 Luo, M., Ye, L., Chang, R. et al. Multi-omics characterization of autophagy-related molecular features for therapeutic targeting of autophagy. Nat Commun 13, 6345 (2022). doi:10.1038/s41467-022-33946-x
-
2022-12-14 Cindy Yang SY, Lien SC, Wang BX, et al. Pan-cancer analysis of longitudinal metastatic tumors reveals genomic alterations and immune landscape dynamics associated with pembrolizumab sensitivity. Nat Commun. 2021;12(1):5137. Published 2021 Aug 26. doi:10.1038/s41467-021-25432-7
-
2023-03-08 Krausgruber T, Redl A, Barreca D, et al. Single-cell and spatial transcriptomics reveal aberrant lymphoid developmental programs driving granuloma formation. Immunity. 2023;56(2):289-306.e7. doi:10.1016/j.immuni.2023.01.014
-
2023-03-29 Kamath T, Abdulraouf A, Burris SJ, et al. Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson's disease. Nat Neurosci. 2022;25(5):588-595. doi:10.1038/s41593-022-01061-1
-
2023-04-05 Hildebrandt F, Andersson A, Saarenpää S, et al. Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver. Nat Commun. 2021;12(1):7046. Published 2021 Dec 2. doi:10.1038/s41467-021-27354-w
-
2023-04-26 Barkley D, Moncada R, Pour M, et al. Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. Nat Genet. 2022;54(8):1192-1201. doi:10.1038/s41588-022-01141-9
-
2023-05-17 Zhang Q, Abdo R, Iosef C, et al. The spatial transcriptomic landscape of non-small cell lung cancer brain metastasis. Nat Commun. 2022;13(1):5983. Published 2022 Oct 10. doi:10.1038/s41467-022-33365-y
-
2023-05-31 Dreyfuss JM, Yuchi Y, Dong X, et al. High-throughput mediation analysis of human proteome and metabolome identifies mediators of post-bariatric surgical diabetes control. Nat Commun. 2021;12(1):6951. Published 2021 Nov 29. doi:10.1038/s41467-021-27289-2
-
2023-07-19 0Wang L, Maletic-Savatic M, Liu Z. Region-specific denoising identifies spatial co-expression patterns and intra-tissue heterogeneity in spatially resolved transcriptomics data. Vol. 13 Nat Commun. Published 2022 Nov 14. doi:10.1038/s41467-022-34567-0
-
2023-08-16 Schäbitz A, Hillig C, Mubarak M, Jargosch M, Farnoud A, Scala E, et al. Spatial transcriptomics landscape of lesions from non-communicable inflammatory skin diseases. Nat Commun. Published 2022 Dec 13. doi:10.1038/s41467-022-35319-w
-
2023-08-30 Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022. p. 1254–61. published 2022 Mar 18, doi:org/10.1126/science.abf0529
-
2023-09-13 Iyer, Matthew K et al. Digital spatial profiling of intraductal papillary mucinous neoplasms: Toward a molecular framework for risk stratification. Science advances vol. 9,11 (2023): eade4582. doi:10.1126/sciadv.ade4582
-
2023-10-04 Garrido-Trigo, Alba et al. Macrophage and neutrophil heterogeneity at single-cell spatial resolution in human inflammatory bowel disease. Nature communications vol. 14,1 4506. 26 Jul. 2023, doi:10.1038/s41467-023-40156-6
-
2023-10-19 Derry, Jonathan M J et al. Trackable Intratumor Microdosing and Spatial Profiling Provide Early Insights into Activity of Investigational Agents in the Intact Tumor Microenvironment. Clinical cancer research vol. 29,18 (2023): 3813-3825. doi:10.1158/1078-0432.CCR-23-0827
-
2023-10-25 He, Weiwei et al. Single-cell transcriptomics of hepatic stellate cells uncover crucial pathways and key regulators involved in non-alcoholic steatohepatitis. Endocrine connections vol. 12,2 e220502. 18 Jan. 2023, doi:10.1530/EC-22-0502
-
2023-12-13 Derry JMJ, Burns C, Frazier JP, et al. Trackable Intratumor Microdosing and Spatial Profiling Provide Early Insights into Activity of Investigational Agents in the Intact Tumor Microenvironment. Clin Cancer Res. 2023;29(18):3813-3825. doi:10.1158/1078-0432.CCR-23-0827
-
2024-01-03 Cibulskis K, Lawrence MS, Carter SL, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31(3):213-219. doi:10.1038/nbt.2514
-
2024-01-17 Arslan, Salim, Debapriya Mehrotra, Julian Schmidt, et al. 2022. Deep learning can predict multi-omic biomarkers from routine pathology images: A systematic large-scale study. bioRxiv 23. January. doi:10.1101/2022.01.21.477189
-
2024-01-24 Saillard C, Dubois R, Tchita O, et al. Validation of MSIntuit as an AI-based pre-screening tool for MSI detection from colorectal cancer histology slides. Nat Commun. 2023;14(1):6695. Published 2023 Nov 6. doi:10.1038/s41467-023-42453-6
-
2024-02-07 Küçükköse E, Baars MJD, Amini M, et al. Stromal localization of inactive CD8+ T cells in metastatic mismatch repair deficient colorectal cancer. Br J Cancer. 2024;130(2):213-223. doi:10.1038/s41416-023-02500-x
-
2024-02-14 Yang, F., Wang, W., Wang, F. et al. scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data. Nat Mach Intell 4, 852–866 (2022). doi:10.1038/s42256-022-00534-z
-
2024-03-06 Roelands J, van der Ploeg M, Ijsselsteijn ME, et al. Transcriptomic and immunophenotypic profiling reveals molecular and immunological hallmarks of colorectal cancer tumourigenesis. Gut. 2023;72(7):1326-1339. doi:10.1136/gutjnl-2022-327608
-
2024-03-13 Yang, H.-S., Teng, L., Kang, D., Menon, V., Ge, T., Finucane, H. K., … Sperling, R. A. (2023, November 30). Cell-type-specific Alzheimer’s disease polygenic risk scores are associated with distinct disease processes in Alzheimer’s disease. Nature Communications. Springer Science and Business Media LLC. doi.org/10.1038/s41467-023-43132-2
-
2024-03-27 Zhu, H., Zhou, R., Cao, D., Tang, J., & Li, M. (2023, October 6). A pharmacophore-guided deep learning approach for bioactive molecular generation. Nature Communications. Springer Science and Business Media LLC. doi.org/10.1038/s41467-023-41454-9
-
2024-04-24 Janesick, A., Shelansky, R., Gottscho, A. D., Wagner, F., Williams, S. R., … Rouault, M. (2023, December 19). High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis. Nature Communications. Springer Science and Business Media LLC. doi.org/10.1038/s41467-023-43458-x
-
2024-05-22 Zheng, X., Wang, R., Zhang, X., Sun, Y., Zhang, H., Zhao, Z., … Cai, M. (2022, May 19). A deep learning model and human-machine fusion for prediction of EBV-associated gastric cancer from histopathology. Nature Communications. Springer Science and Business Media LLC. doi.org/10.1038/s41467-022-30459-5
-
2024-05-29 Went, M., Sud, A., Mills, C., Hyde, A., Culliford, R., Law, P., … Houlston, R. (2024, March 25). Phenome-wide Mendelian randomisation analysis of 378,142 cases reveals risk factors for eight common cancers. Nature Communications. Springer Science and Business Media LLC. doi.org/10.1038/s41467-024-46927-z
-
2024-06-05 Subramanian, A., Vernon, K. A., Zhou, Y., Marshall, J. L., Alimova, M., Arevalo, C., … Greka, A. (2024, June). Protective role for kidney TREM2 macrophages in obesity- and diabetes-induced kidney injury. Cell Reports. Elsevier BV. doi.org/10.1016/j.celrep.2024.114253
-
2024-06-19 Moffet, J. J. D., Fatunla, O. E., Freytag, L., Kriel, J., Jones, J. J., Roberts-Thomson, S. J., … Best, S. A. (2023, January 1). Spatial architecture of high-grade glioma reveals tumor heterogeneity within distinct domains. Neuro-Oncology Advances. Oxford University Press (OUP). doi.org/10.1093/noajnl/vdad142
-
2024-07-10 Panei, F. P., P. Gkeka and M. Bonomi. 2024. Identifying small-molecules binding sites in RNA conformational ensembles with SHAMAN. Nature Communications. Springer Science and Business Media LLC, 8. July. doi:10.1038/s41467-024-49638-7
-
2024-07-17 Zhao, Jian, Jing Zeng, Cairong Zhu, Xuechao Li, Dong Liu, Jun Zhang, Fei Li, Giovanni Targher and Jian-Gao Fan. 2023. Genetically predicted plasma levels of amino acids and metabolic dysfunction-associated fatty liver disease risk: a Mendelian randomization study. BMC Medicine. Springer Science and Business Media LLC, 28. November. doi:10.1186/s12916-023-03185-y
-
2024-08-14 Blampey, Quentin, Kevin Mulder, Margaux Gardet, Stergios Christodoulidis, Charles-Antoine Dutertre, Fabrice André, Florent Ginhoux and Paul-Henry Cournède. 2024. Sopa: a technology-invariant pipeline for analyses of image-based spatial omics. Nature Communications. Springer Science and Business Media LLC, 11. June. doi:10.1038/s41467-024-48981-z
-
2024-08-21 Singhal, Vipul, Nigel Chou, Joseph Lee, Yifei Yue, Jinyue Liu, Wan Kee Chock, Li Lin, et al. 2024. BANKSY unifies cell typing and tissue domain segmentation for scalable spatial omics data analysis. Nature Genetics. Springer Science and Business Media LLC, 27. February. doi:10.1038/s41588-024-01664-3
-
2024-08-27 Mallach, Anna, Magdalena Zielonka, Veerle van Lieshout, Yanru An, Jia Hui Khoo, Marisa Vanheusden, Wei-Ting Chen, et al. 2024. Microglia-astrocyte crosstalk in the amyloid plaque niche of an Alzheimer’s disease mouse model, as revealed by spatial transcriptomics. Cell Reports. Elsevier BV, June. doi:10.1016/j.celrep.2024.114216
-
2024-09-11 Park, Hanseul, Byounggook Cho, Hongwon Kim, Takashi Saito, Takaomi C. Saido, Kyoung-Jae Won and Jongpil Kim. 2023. Single-cell RNA-sequencing identifies disease-associated oligodendrocytes in male APP NL-G-F and 5XFAD mice. Nature Communications. Springer Science and Business Media LLC, 13. February. doi:10.1038/s41467-023-36519-8
-
2024-11-06 Love, Nick R., Claire Williams, Emily E. Killingbeck, Alexander Merleev, Mohammad Saffari Doost, Lan Yu, John D. McPherson, et al. 2024. Melanoma progression and prognostic models drawn from single-cell, spatial maps of benign and malignant tumors. Science Advances. American Association for the Advancement of Science (AAAS), 12. July. doi:10.1126/sciadv.adm8206
-
2024-11-13 Vanrobaeys, Yann, Utsav Mukherjee, Lucy Langmack, Stacy E. Beyer, Ethan Bahl, Li-Chun Lin, Jacob J. Michaelson, Ted Abel and Snehajyoti Chatterjee. 2023. Mapping the spatial transcriptomic signature of the hippocampus during memory consolidation. Nature Communications. Springer Science and Business Media LLC, 29. September. doi:10.1038/s41467-023-41715-7
-
2024-11-21 Krapp, Lucien F., Luciano A. Abriata, Fabio Cortés Rodriguez and Matteo Dal Peraro. 2023. PeSTo: parameter-free geometric deep learning for accurate prediction of protein binding interfaces. Nature Communications. Springer Science and Business Media LLC, 18. April. doi:10.1038/s41467-023-37701-8
-
2024-12-18 Matusiak M, Hickey JW, van IJzendoorn DGP, et al. Spatially Segregated Macrophage Populations Predict Distinct Outcomes in Colon Cancer. Cancer Discov. 2024;14(8):1418-1439. doi:10.1158/2159-8290.CD-23-1300
-
2025-01-22 Xiang J, Wang X, Zhang X, et al. A vision-language foundation model for precision oncology. Nature. Published online January 8, 2025. doi:10.1038/s41586-024-08378-w
-
2025-02-12 Brandes N, Ofer D, Peleg Y, Rappoport N, Linial M. ProteinBERT: a universal deep-learning model of protein sequence and function. Bioinformatics. 2022;38(8):2102-2110. doi:10.1093/bioinformatics/btac020